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Abstract The basic computational task of the thin-ship theory of free-surface potential flow about a ship that
advances at constant speed along a straight path in calm water, of large depth and lateral extent, is considered.
Specifically, a straightforward method for evaluating the pressure and the wave profile at a ship hull (the wave
drag, hydrodynamic lift and pitch moment, and sinkage and trim are also considered) in accordance with Michell’s
thin-ship theory is given. A main ingredient of this method is a simple analytical approximation to the local-flow
component in the expression for the Green function (associated with the classical Michell–Kelvin linearized free-
surface boundary condition) of thin-ship theory. This practical Green function is used to evaluate and analyze
steady flow about a four-parameter family of ship bows with rake and flare. In particular, the variations of the
bow-wave height and location with respect to the draft-based Froude number, the entrance angles at the top and
bottom waterlines, and the rake angle are explored via a systematic parametric study. This parametric study provides
estimates—immediately useful for design—of the influence of rake and flare on the height and the location of a
ship bow wave, and shows that rake and flare effects can be significant, especially at low Froude numbers.
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δ = 45°, α = 15°, α’ = 5° δ = - 45°, α = 5°, α’ = 15°

Fig. 1 Two examples of the four-parameter family of ship bows considered in the study

1 Introduction

The bow wave generated by a ship with a wedged-shaped bow that advances at constant speed Vs in calm water (of
effectively infinite depth and lateral extent) is considered in [1], where several simple analytical relations are given.
In particular, expressions that define the height of the bow wave, the distance between the ship stem and the crest of
the wave, the rise of water at the stem, and the bow wave profile are given in [1]. The class of ship bows considered
in [1] is defined by two parameters: the draft D of the bow and the waterline entrance angle 2α. Steady flow about
this two-parameter family of ship bows likewise depends on two parameters: the waterline entrance angle 2α and
the draft-based Froude number F ≡ Vs/

√
gD, where g stands for the acceleration of gravity. The comparisons

between the analytical relations and experimental measurements given in [1] show that, in spite of their remarkable
simplicity, these analytical relations are sufficiently accurate to be useful for practical design applications, notably
at early stages (concept and preliminary design).

However, the practical usefulness of the relations given in [1] is limited by the fact that the two-parameter family
of ship bows considered in this study is overly restrictive for many applications. Indeed, typical ship bows, notably
bows of fast ships, have significant rake and flare. The effects of rake and flare, ignored in [1], must then be taken
into account to design a ship bow, particularly for a fast ship. The wave created by a ship bow with rake and flare
is considered here.

Specifically, we consider ship bows that depend on four parameters: the draft D of the ship bow, the entrance
angle 2α at the top waterline (at the free surface), the rake angle δ (angle between the ship stem and the vertical)
and the hull flare, controlled by α − α′ where 2α′ is the entrance angle at the bottom waterline (at the ship draft).
In fact, the hull flare is also affected by the rake angle δ. Two examples of the four-parameter family of ship bows
considered here are shown in Fig. 1 for rake angles δ = 45◦ (left side) or δ = −45◦ (right), top-waterline entrance
angles 2α = 30◦ (left) or 10◦ (right) and bottom-waterline entrance angles 2α′ = 10◦ (left) or 30◦ (right). The
four-parameter family of ship bows depicted in Figs. 1 and 24 is sufficiently general to encompass a large class of
fast ships. The flow (notably the bow wave, of particular interest in this study) due to this four-parameter family
of ship bows depends on four parameters: F ≡ Vs/

√
gD, δ, α and α′. The two-parameter family of wedge-shaped

ship bows considered in [1–3] corresponds to the special case δ = 0 and α′ = α.
Alternative methods for evaluating steady free-surface flow about ships have been considered in the literature.

These methods include semi-analytical theories based on various approximations (thin-ship, slender-ship, 2d + t
theories), potential-flow panel (boundary integral equation) methods that rely on the use of a Green function (elemen-
tary Rankine source, or Havelock source that satisfies the radiation condition and the Michell linearized free-surface
boundary condition), and computational fluid dynamics (CFD) methods that solve the Euler or RANS equations.
These alternative calculation methods are reported in a huge body of literature, not reviewed here. A partial list of
illustrative references may be found in [1].

In principle, any of the alternative methods reported in the literature can be used to evaluate steady flow about the
four-parameter family of ship bows considered here. In practice, however, most of these methods are ill suited for the
systematic parametric studies required for our practical goal of obtaining simple analytical relations immediately
useful for ship design. In fact, selection of a calculation method suited for systematic parametric studies or for early
design (concept and preliminary design) present similar issues, which involve consideration of a tradeoff between
competing requirements with respect to accuracy and practicality. Indeed, practical tools that are simple to use and
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Thin-ship theory and influence of rake and flare 51

highly efficient, but need not be highly accurate, are required to quickly evaluate the large number of alternative
designs that typically need to be considered for concept design and preliminary design. On the other hand, detail
design, and especially design evaluation, involve many fewer choices and require more accurate computational
tools, for which efficiency and ease of use are less important considerations.

Thin-ship theory is used here, because this theory is reasonably well suited for the class of fine bows under consid-
eration, and because it significantly simplifies our parametric studies. Specifically, the flow about the four-parameter
family of ship bows considered here can be expressed as the product of the factor (tan α+ tan α′)/2, which essen-
tially represents an average waterline entrance angle, by a function that depends on three (instead of four) parameters:
the (draft-based) Froude number F , the rake angle δ, and a parameter ϕ ≡ (tan α − tan α′)/(tan α + tan α′) that is
closely related to the hull flare. In fact, this function of F, δ, ϕ can be expressed in terms of two functions that only
depend on the two parameters F and δ.

More generally, Michell’s thin-ship theory provides an exceptionally simple and robust method for evaluating
steady flow about a ship, and indeed is easily the most successful and most widely used theory of ship wavemaking.
This theory has been applied in numerous studies, and in fact is still relevant and useful to this day; notably at early
design stages (concept design and preliminary design) and to evaluate flows about fast ships, which typically have
fine bows; e.g. [4, 5]. The application of thin-ship theory to steady flow about a ship bow with rake and flare consid-
ered here offers an opportunity to revisit the basic computational task of this classical theory, and this opportunity
is taken up.

An important property of Michell’s thin-ship theory is that variables of main practical interest (wave profile along
ship hull, pressure at ship hull, hydrodynamic lift and pitch moment, sinkage and trim, drag) only require flow cal-
culations at the ship centerplane. Thus, Michell’s thin-ship theory defines major features of three-dimensional flow
about a ship in terms of two-dimensional calculations. In particular, the 2d thin-ship representation of 3d flow about
a ship stated in the next section involves a Green function that only depends on two coordinates (instead of three).
This Green function of thin-ship theory is reconsidered here, and a remarkably simple analytical expression for the
local-flow component in the expression for the ‘thin-ship-theory Green function’ is given. This highly simplified
Green function provides a practical basis for efficiently evaluating the hydrodynamic pressure and wave profile at
the hull of a thin ship.

2 Michell’s thin-ship approximation

Steady potential flow about a ship, of length Ls , that advances in calm water (of effectively infinite depth and lateral
extent) with constant speed Vs along a straight path is considered. The X axis is taken along the path of the ship and
points toward the ship bow. The Z axis is vertical and points upward, and the mean free surface is taken as the plane
Z = 0. The ship hull is symmetric about the vertical plane Y = 0. The flow is observed from a moving system of
coordinates attached to the ship and thus appears steady. The flow velocity in this system of coordinates is given
by (U − Vs, V,W ) where (U, V,W ) is the flow due to the ship. Nondimensional coordinates and flow velocity are
defined in terms of a characteristic reference length L ref , e.g. the ship length Ls or draft D, and the ship speed Vs as

x ≡ (x, y, z) ≡ (X,Y, Z)/L ref , u ≡ (u, v, w) ≡ (U, V,W )/Vs . (1)

The Froude number F is defined as

F = Vs/
√

gL ref , (2)

where g stands for the acceleration of gravity.
Hereinafter, x̃ and ũ stand for a point within the flow region and the corresponding flow velocity. The ship hull

surface is defined as

y = ± b(x, z) with (x, z) inside H0. (3)

Here H0 stands for the portion of the plane y = 0 located inside the ship hull, called ‘ship centerplane’ hereinafter.
Within the thin-ship approximation, the flow due to the ship is defined in terms of a distribution of sources, with
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strength −2bx (where bx ≡ ∂b/∂x) as readily follows from the boundary condition at the ship hull, distributed
over the ship centerplane H0. The flow velocity ũ is then given by

ũ = −2
∫ ∫

H0

dxdz∇̃G(x, 0, z ; x̃)bx (x, z), (4)

where ∇̃ ≡ (∂/∂ x̃, ∂/∂ ỹ, ∂/∂ z̃) and G(x; x̃) represents the velocity potential of the flow created at a flow-field
point x̃ by a point source of unit strength located at the source point x. The Green function G satisfies the linear
free-surface boundary condition Gz + F2Gxx = 0 at z = 0.

The flow is only considered here at flow-field points (̃x, 0, z̃) located at the ship centerplane. Expression (4) then
defines the nondimensional hydrodynamic pressure p̃ at the ship hull as

p̃ ≡ P

ρV 2
s

≈ ũ = 2
∫ ∫

H0

dxdz
∂G

∂x
bx . (5)

Here, bx ≡ bx (x, z) and G ≡ G(x, z; x̃, z̃) ≡ G(x, 0, z; x̃, 0, z̃). Furthermore, the relation ∂G/∂ x̃ = −∂G/∂x was
used in (5). The elevation E of the free surface at a flow field point (̃x, 0, 0) is given by

ẽ ≡ Eg/V 2
s = ũ. (6)

Thus, the main computational task of thin-ship theory is the evaluation of (5), which defines the hydrodynamic
pressure p̃ and the wave profile ẽ at the ship hull. This basic and classical task—considered in numerous studies,
e.g. [5–10]—is revisited here.

3 Green function of thin-ship theory

The Green function G of thin-ship theory is considered first. We define a, c and d as

a ≡ x − x̃

F2 , c ≡ z + z̃

F2 ≤ 0, d ≡
√

a2 + c2 ≡ r1

F2 ≡
√
(x − x̃)2 + (z + z̃)2

F2 , (7)

where F is the Froude number (2). The coordinates a and c and the related distance d between the source point
(x, 0, z) and the mirror image (̃x, 0, −̃z) of the flow-field point (̃x, 0, z̃)with respect to the mean free-surface plane
z = 0 are nondimensional with respect to the reference length L ref = V 2

s /g. We also define ρ, θ and ψ as

0 ≤ ρ ≡ d

1 + d
≤ 1, 0 ≤ θ ≡ −c

d
≤ 1, 0 ≤ ψ ≡ −c

d + |a| ≤ 1. (8)

We have

ψ = θ/(1 +
√

1 − θ2), θ = 2ψ/(1 + ψ2). (9)

Expressions (7) in [11] or (13)–(16) in [12] yield

G = GS + GL + GW , (10)

where GS,GL and GW represent the fundamental free-space singularity, a local-flow component, and waves,
respectively. The free-space singularity GS is given by

4πGS = −1/r with r =
√
(x − x̃)2 + (z − z̃)2. (11)

The wave component GW is given by

4πGW = H(x − x̃)
8

F2 Im

∞∫

0

dt e(1+t2)(z+̃z)/F2−i
√

1+t2(x−x̃)/F2
, (12)

where H(·) is the Heaviside unit-step function and Im means imaginary part.
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Fig. 3 Relative error associated with the three-term nearfield
approximation (15)

Expressions (1) and (3) in [13] or (13)–(15) and (18a) in [12] show that the local-flow component GL can be
expressed as

4πF2GL ≡ gL = 1/d − 2L , (13)

where d is given by (7) and L is defined as

L = 1 + ψ − 2

π

1∫

0

dt Im [eA E1(A)+ log(A)+ γ ]. (14a)

Here, ψ is given by (8), γ = 0.577 . . . is Euler’s constant, E1(·) is the usual exponential integral, and A is defined
as

A ≡ c(1 − t2)+ i |a|
√

1 − t2 (14b)

with c and a given by (7). The integral in (14a) is null if A = 0, i.e., if d = 0. We then have 1 ≤ L ∼ 1 + ψ ≤ 2
as d → 0. Thus, the function L is finite as d → 0. Figure 2 depicts the function (1 + d)L for 0 ≤ ρ ≤ 1 with
ψ = 0, 0.2, . . . , 1.

4 Nearfield and farfield approximations to local-flow component

Expression (5) in [13], with (8) and (9) of the present study, yield the nearfield approximation

gL ∼ 1

d
− 2(1 + ψ)− d

1 + ψ

1 + ψ2

[
(1 − ψ)

(
log

d/2

1 + ψ2 + γ − 1

2
+ ψ2

6

)
− 8

3
ψ

]
as d → 0. (15)

The relative error associated with the three-term nearfield approximation (15) is depicted in Fig. 3 for 0 ≤ d ≤ 0.15.
This figure shows that the nearfield approximation (15) yields a relative error smaller than 1% for d ≤ 0.15.

The integral representation (14) is well suited for numerical evaluation for small and moderate values of d,
i.e., in the nearfield. For large values of d, i.e., in the farfield, [14] yields the nine-term farfield asymptotic
approximation
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gL ∼ −1

d
− 2

θ − 1/(1 + θ)

d2 − 6 θ

d3

(
θ − 2 + θ

(1 + θ)2

)
− 6

d4

(
5 θ3+ 
3

(1 + θ)3

)

−30 θ

d5

(
7 θ3+ 
4

(1 + θ)4

)
− 90

d6

(
21 θ5 − 
5

(1 + θ)5

)
− 1890 θ

d7

(
11 θ5 − 
6

(1 + θ)6

)

−630

d8

(
429 θ7+ 
7

(1 + θ)7

)
− 5670 θ

d9

(
715 θ7+ 
8

(1 + θ)8

)
as d → ∞ (16)

with


3 = 1 + 3 θ − 15 θ2− 18 θ3 − 6 θ4,


4 = 4 + 16 θ − 20 θ2− 55 θ3 − 40 θ4 − 10 θ5,


5 = 1 + 5 θ − 15 θ2− 115 θ3 − 15 θ4+ 250 θ5+ 330 θ6+ 175 θ7+ 35 θ8,


6 = 2 + 12θ + 6 θ2− 104 θ3 − 118 θ4+ 111 θ5+ 336 θ6+ 301 θ7+ 126 θ8+ 21 θ9, (17)


7 = 5 + 35 θ − 91 θ2 − 1197 θ3− 2331 θ4+ 4515 θ5+ 12229 θ6+ 3430 θ7

−17654 θ8 − 27342 θ9− 18690 θ10 − 6468 θ11 − 924 θ12,


8 = 40 + 320 θ + 440 θ2 − 3200 θ3− 11768 θ4 − 64 θ5+ 34200 θ6+ 38709 θ7

−16752 θ8 − 78324 θ9 − 83952 θ10− 46530 θ11 − 13728 θ12 − 1716 θ13.

The approximation (16), where 1 ≤ n ≤ 9 terms are used, provides a hierarchy of farfield approximations. The
first two terms in the farfield approximation (16) agree with (13) and (20a) in [12] and with (12)–(15) in [15]. The
relative errors associated with the farfield asymptotic approximations (16) with 2 ≤ n ≤ 9 are depicted in Fig. 4 for
0.85 ≤ ρ ≤ 1 with θ = 0, 0.2, . . . , 1. These figures show that six terms in the asymptotic approximation (16) are
optimal to obtain a 1% relative error. Specifically, the six-term approximation (16) yields a relative error smaller
than 1% for 6 ≤ d, which corresponds to ρ larger than approximately 0.86.

Thus, the 3-term nearfield approximation (15) and the 6-term farfield approximation (16)–(17) yield relative
errors smaller than 1% for d ≤ 0.15 and 6 ≤ d, respectively. A midfield approximation that yields comparable
accuracy for 0.15 < d < 6 is given further on.

The nearfield approximation (15) and the farfield approximation (16) show that the local-flow component gL

behaves approximately like a unit sink in the near field and a unit source in the farfield. Indeed, gL can be expressed
as

gL = Q/d with Q ≡ 1 − 2d L . (18)

We have Q → 1 as d → 0 and Q → −1 as d → ∞. This property is illustrated in Fig. 5, which depicts the
‘equivalent source strength’ Q for 0 ≤ ρ ≤ 1 with ψ = 0, 0.2, . . . , 1.

5 Simple approximation to local-flow component

A rough approximation to the function (1 + d)L depicted in Fig. 2 is 1 + ψ(1 − ρ) ≡ 1 + ψ/(1 + d). A rough
approximation to the function

(1 + d)L − 1 − ψ/(1 + d), (19a)

depicted in Fig. 6 for 0 ≤ ρ ≤ 1 with ψ = 0, 0.2, . . . , 1, is

2.3ψ2ρ(1 − ρ) ≡ 2.3ψ2d/(1 + d)2. (19b)

Expressions (13) and (19) yield the approximation gL ≈ gL
a with

gL
a ≡ 1

d
− 2

1 + d
− 2ψ

(1 + d)2

(
1 + 2.3ψ d

1 + d

)
. (20)
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Fig. 4 Relative errors associated with the n-term (2≤n ≤9) farfield approximation (16)
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r ≡ gL − gL

a

This approximation yields gL
a ∼ 1/d − 2(1 + ψ) as d → 0 in agreement with the first two terms in the nearfield

approximation (15), and gL
a ∼ −1/d + 2(1 − ψ)/d2 as d → ∞ in agreement with the first term (or the first two

terms if ψ = 0, i.e., along the axis c = 0) in the farfield approximation (16). The function L defined by (14) and
the function La ≡ (1/d − gL

a )/2 associated with the approximation (20) are depicted in Fig. 7 for 0 ≤ ρ ≤ 1 with
ψ = 0, 0.2, . . . , 1.

6 Midfield approximation to local-flow component

The local-flow component gL defined by (13) and (14) is now expressed as

gL = gL
a + gL

r , (21a)
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where gL
a is the approximation (20) and gL

r ≡ gL − gL
a is the corresponding remainder. The function gL

r (ρ;ψ) is
depicted in Fig. 8. The vertical lines ρ ≈ 0.13 and ρ ≈ 0.86, which correspond to d = 0.15 and d = 6, are also
shown in Fig. 8. Within the midfield region 0.15 < d < 6, the remainder gL

r in (21a) can be evaluated using the
polynomial approximation

gL
r ≈ 0.0810 − 0.0116ψ − 0.1618ψ2 − 0.0076ψ3 + [0.6272 − 0.9676ψ + 0.7362ψ2+ 2.2920ψ3]ρ

−[2.1560 + 0.7414ψ − 0.8938ψ2+ 10.362ψ3]ρ2 + [2.1092 + 3.8784ψ − 3.4960ψ2+ 16.132ψ3]ρ3

−[0.6644 + 2.1148ψ − 2.1338ψ2+ 8.2684ψ3]ρ4. (21b)

The relative errors associated with the 6-term farfield approximation (16)–(17) and the midfield approximation
(20)–(21) are depicted in Fig. 9 for d = 6 and 0 ≤ ψ ≤ 1. These errors are comparable, and approximately within
the range ±0.7%. Figure 10 similarly depicts the relative errors associated with the 3-term nearfield approximation
(15) and the midfield approximation (20)–(21) for d = 0.15 and 0 ≤ ψ ≤ 1. This figure shows that the midfield
approximation is more accurate than the nearfield approximation for d = 0.15. Indeed, Fig. 11 shows that the near-
field approximation (15) and the midfield approximation (20)–(21) yield comparable errors, approximately within
the range ±0.5%, for d = 0.1. Thus, the 3-term nearfield approximation (15), the 6-term farfield approximation
(16)–(17) and the midfield approximation (20)–(21) can be used within the complementary regions d ≤ 0.1, 6 ≤ d
and 0.1 < d < 6, respectively. The vertical lines d = 0.1 and d = 6 are shown in Fig. 8. The functions L defined
by these three complementary approximations and by (14) cannot be distinguished in Fig. 12.

7 Practical Green function

The Green function of thin-ship theory defined by (10)–(14) can finally be expressed as

G ≡ GW + GSL
a + GL

r . (22)

The wave component GW is defined by the Fourier integral (12). GW is examined in [16], where a farfield approxima-
tion and two complementary nearfield integral representations are given. However, the Fourier–Kochin approach is
a more practical approach for evaluating the contribution of the wave component GW to the hull pressure defined by
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Fig. 12 Function L defined by the integral representation (14)
and by the nearfield approximation (15) for d ≤ 0.1, the farfield
approximation (16)–(17) for 6 ≤ d, and the midfield approxi-
mation (20)–(21) for 0.1 < d < 6

(5), and this approach is adopted here. The local-flow component GSL
a in (22) is defined as 4πGSL

a ≡ −1/r +gL
a /F2

where gL
a is the simple approximation (20). Expressions (7) then yield

4πGSL
a ≡ −1

r
+ 1

r1
− 2

F2 + r1
− 2F2ψ

(F2 + r1)2

(
1 + 2.3ψ r1

F2 + r1

)
≡ −1

r
+ 4πGL

a , (23a)

where r, r1 and ψ are defined by (11), (7) and (8) as

r =
√
(x − x̃)2+ (z − z̃)2, r1 =

√
(x − x̃)2+ (z + z̃)2, ψ = −(z + z̃)

r1 + | x − x̃ | . (23b)

The remainder GL
r in (22) is the local-flow component

4πF2GL
r ≡ gL

r ≡ gL − gL
a (24)

which is depicted in Fig. 8. The remainder gL
r can be evaluated using (24), (20), the nearfield approximation (15),

the farfield approximation (16)–(17), and the midfield approximation (21b).
The function gL defined by the integral representation (13)–(14) and the function gL

a given by the simple approx-
imation (20) are depicted in Fig. 13 for 0 ≤ ρ ≤ 1 with ψ = 0, 0.2, . . . , 1. This figure shows that the simple
analytical expression (20) provides a reasonable approximation to the function gL overall. More precisely, the
approximation gL

a is accurate in both the nearfield, where gL is singular (specifically, gL ∼ 1/d as d → 0) and
the farfield where gL vanishes (gL ∼ −1/d as d → ∞). Figure 13 shows that the approximation gL

a is reasonable,
although not highly accurate, in the midfield. The highly-simplified Green function,

G ≈ Ga ≡ GW + GSL
a , (25)

may then be expected to be useful for practical applications. In fact, this conjecture is verified in the next section.
The approximate Green function defined by (25), (23) and (12) is less accurate—but considerably simpler—than
(22) and the alternative approximations, based on table interpolations [12, 17] or Chebyshev polynomials [18],
given in the literature. In particular, the approximation (23) can be used in the entire domain 0 ≤ r1 ≤ ∞. Thus,
no division of this domain into subdomains—required for the alternative approximations given in the literature—is
needed in (23).
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Fig. 13 Functions gL and
gL

a given by the integral
representation (13) and (14)
and by the simple analytical
approximation (20),
respectively

ρ
gL ,g

L a
0 0.2 0.4 0.6 0.8 1

-1

0

1

2

3

4

5
ψ=0.0
ψ=0.2
ψ=0.4
ψ=0.6
ψ=0.8
ψ=1.0
ψ=0.0
ψ=0.2
ψ=0.4
ψ=0.6
ψ=0.8
ψ=1.0

8 Application to wedge-shaped ship bows without rake or flare

The contributions of the wave component GW , the main local-flow component GSL
a and the remainder GL

r in
(22) to the pressure p̃ and the free-surface elevation ẽ defined by (5) and (6) are now considered for a wall-sided
wedge-shaped bow (no rake or flare) with draft D and waterline entrance angle 2α. The draft D of the bow is
used as reference length L ref in (1) and (2). Thus, the hull centerplane H0 consists of the rectangular region
−1 ≤ z ≤ 0,−� ≤ x ≤ 0. Here, � ≡ Lb/D is the nondimensional length of the ship bow considered here. A bow
length � = 4 is considered for four Froude numbers F = 0.5, 1, 2 and 4. These draft-based Froude numbers F
correspond to length-based Froude numbers equal to 0.125, 0.25, 0.5 and 1 for a ship with length Ls equal to four
times the bow length Lb, and bow length Lb equal to four times the draft D (length/draft ratio Ls/D = 16). We
have bx = − tan α in (5). This expression then defines the hydrodynamic pressure p̃ and free-surface elevation ẽ as

p̃ ≡ p̃∗(tan α)/(2π) with p̃∗ ≡ p̃W + p̃SL
a + p̃L

r ≡ p̃a + p̃L
r ,

(26)
ẽ ≡ ẽ∗(tan α)/(2π) with ẽ∗ ≡ ẽW + ẽSL

a + ẽL
r ≡ ẽa + ẽL

r ,

where the components (·)W , (·)SL
a , (·)L

r , (·)a correspond to the components GW ,GSL
a ,GL

r ,Ga in (22) and (25).
Expressions (5) and (12) yield p̃W = 0 for 0 ≤ x̃ , and

p̃W = −8

∞∫

0

dt
1 − e−(1+t2)/F2

1 + t2 e(1+t2 )̃z/F2 [sin(
√

1 + t2 x̃/F2)− S̃�] (27a)

with S̃� ≡ 0 for −� ≤ x̃ ≤ 0 and S̃� ≡ sin[√1 + t2(̃x + �)/F2] for x̃ ≤ −�. Expressions (5), (23) and (24) yield

p̃SL
a =

0∫

−1

dz

[
1

r
− 1

r1
+ 2

F2 + r1
+ 2F2ψ

(F2 + r1)2

(
1 + 2.3ψ r1

F2 + r1

)]x=0

x=−�
, (27b)

p̃L
r = −1

F2

0∫

−1

dz
[
gL

r

]x=0

x=−� , (27c)

where [ f (x, z; x̃, z̃)]x=0
x=−� ≡ f (x = 0, z; x̃, z̃) − f (x = −�, z; x̃, z̃). The components ẽW , ẽSL

a and ẽL
r to the

free-surface elevation ẽ∗ in (26) are given by (27) with z̃ = 0, which yields 1/r − 1/r1 = 0 in (27b).
Figure 14 shows the pressures p̃W + p̃SL

a + p̃L
r and p̃W + p̃SL

a for −8 ≤ x̃ ≤ 2 at the top waterline z̃ = 0
(for which p̃ is identical to the free-surface elevation ẽ) and the bottom waterline z̃ = −1. The wedge-shaped bow
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Fig. 14 Pressures p̃W + p̃SL
a + p̃L

r (lines) and p̃W + p̃SL
a (circles or triangles) for −8 ≤ x̃ ≤ 2 at the top waterline z̃ = 0 (for which p̃

is identical to the free-surface elevation ẽ) and the bottom waterline z̃ = −1 for a wedge-shaped bow between the vertical lines x = 0
and x = −4

considered here is located between the vertical lines x = 0 and x = −4 shown in Fig. 14. Four draft-based Froude
numbers are considered: F = 0.5 (top left corner), F = 1 (bottom left), F = 2 (top right) and F = 4 (bottom
right). The pressure p̃W + p̃SL

a + p̃L
r and the related approximation p̃W + p̃SL

a , respectively identified by lines
or symbols (circles or triangles) in Fig. 14, cannot be distinguished. This result, which will be further verified in
Fig. 15, indicates that the remainder GL

r in (22) can be neglected, and that the highly simplified approximate Green
function Ga ≡ GW + GSL

a defined by (25) can be used in practice. The simple Green function Ga given by (25),
(23) and (12) is then used henceforth.

9 Steady flow about a generic thin ship

The basic computational task of evaluating the hull pressure p̃ defined by (5), with the simple Green function
G ≈ Ga given by (25), (23) and (12), is now considered for a generic thin ship defined by (3). The hull pressure p̃
and the free-surface elevation ẽ defined by (5) and (6) can be expressed as

p̃ ≈ p̃a ≡ p̃W + p̃SL
a , ẽ ≈ ẽa ≡ ẽW + ẽSL

a , (28)

where (·)a and the components (·)W and (·)SL
a correspond to the practical Green function Ga given by (25) and the

related components GW and GSL
a .
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Fig. 15 Pressures p̃W + p̃SL
a + p̃L

r (lines) and p̃W + p̃SL
a (circles or triangles) for −6 ≤ x̃ ≤ 1 at the top waterline z̃ = 0 (for which p̃

is identical to the free-surface elevation ẽ) and the bottom waterline z̃ = −1 for a wedge-shaped bow between the vertical lines x = 0
and x = −4

Expressions (5) and (12) yield

p̃W = −4

πF2

∞∫

0

dt
√

1 + t2 e(1+t2 )̃z/F2
(C∗C̃ + S∗ S̃) with

{
C̃
S̃

}
≡

{
cos(

√
1 + t2 x̃/F2)

sin(
√

1 + t2 x̃/F2)

}
(29a)

and
{

C∗
S∗

}
≡ 1

F2

∫ ∫

H̃0

dxdz
∂b(x, z)

∂x
ez(1+t2)/F2

{
cos(

√
1 + t2x/F2)

sin(
√

1 + t2x/F2)

}
. (29b)

An alternative expression for p̃W is

p̃W = −4

πF2

∞∫

0

dt
√

1 + t2 e(1+t2 )̃z/F2
S(t ; x̃) (29c)

with

S(t ; x̃) ≡ 1

F2

∫ ∫

H̃0

dxdz
∂b(x, z)

∂x
ez(1+t2)/F2

cos[
√

1 + t2(x − x̃)/F2]. (29d)
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H̃0 in (29b) and (29d) stands for the portion x̃ ≤ x of the hull centerplane H0, in accordance with the unit-step
function H(x − x̃) in (12). The wave component ẽW in (28) is given by the foregoing alternative expressions with
z̃ = 0 in (29a) or (29c). The wave drag DW can be determined from the energy radiated by the farfield waves using
the Havelock formula

CW ≡ DW

ρV 2
s L2

ref

= 4

π

∞∫

0

dt
√

1 + t2 (C2∗ + S2∗), (29e)

where C∗ and S∗ are given by (29b) with H̃0 taken as H0.
Expressions (5) and (23) yield

p̃SL
a = 1

2π

∫ ∫

H0

dxdz
∂b(x, z)

∂x

[
|x − x̃ |M + 2F2ψ

(F2 + r1)3

(
1 + 4.6ψ + F2

r1

)]
sign(x − x̃) (30a)

with

M ≡ 1

r3 − 1

r3
1

+ 2

(F2 + r1)3

[
1 + F2

r1

(
1 + 2ψ − 2.3ψ2 F2 − 2r1

F2+ r1

)]
, (30b)

r ≡
√
(x − x̃)2 + (z − z̃)2, r1 ≡

√
(x − x̃)2 + (z + z̃)2 (30c)

and

ψ ≡ −(z + z̃)/(r1 + |x − x̃ |). (30d)

The local-flow component ẽSL
a in (28) is given by (30) with z̃ = 0, which yields 1/r3 − 1/r3

1 = 0 in (30b).
The terms 1/r3 and 1/r3

1 in (30b) and the term F2/r1 in (30a) and (30b) are singular for r = 0 or r1 = 0. These
singularities can be integrated analytically. In particular, the integral

Ip (̃x, z̃) ≡
∫ ∫

Hp

dxdz
x − x̃

r3 ,

where Hp stands for a flat panel bounded by straight segments, can be evaluated using well-known analytical
expressions. It is also well known that the integral Ip is null for a flow-field point (̃x, z̃) located at the centroid
(̃x p, z̃ p) of Hp. Thus, the vicinity of a point (̃x, z̃) of H0 only yields a small contribution to the integral
∫ ∫

H0

dxdz
∂b(x, z)

∂x

x − x̃

r3 .

This property suggests that a straightforward alternative to analytical integration of the singular terms 1/r3−1/r3
1

in (30b) and F2/r1 in (30a) and (30b) consists in performing the substitutions

1

r3 − 1

r3
1

→ 1

r3+ ε
− 1

r3
1 + ε1

,
1

r1
→ 1

√
r2

1 + ε′
, (31a)

where ε, ε1 and ε′ stand for small positive real numbers. These may be taken as

ε = h6
p/(h

3
p + r3), ε1 = h6

p/(h
3
p + r3

1 ), ε′ = h6
p/(h

4
p + r4

1 ). (31b)

Here, h p is a small positive real number that is related to the size of the elements Hp used to perform the surface
integrations over the ship centerplane H0 in (30a). Expressions (31) show that differences between the functions

1/(r3 + ε) and 1/r3 and the functions 1/
√

r2
1 + ε′ and 1/r1 are smaller than approximately 1.5% for 2h p < r

and 0.14% for 3h p < r . The modified integrand of (30a) associated with the substitutions (31a) is a continuous
(non-singular) function, like the integrands of (29b) or (29d). Thus, the surface integrals (30a) and (29b) or (29d)
can be evaluated using straighforward numerical-integration formulae. In particular, the hull centerplane H0 can be
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divided into a set of elements Hp, e.g. triangular elements, and integration over each element Hp can be performed
using a Gaussian rule, e.g. the 7-point quadrature rule for a triangle [19].

The wave drag—already given by the Havelock formula (29e) for the energy radiated by the farfield waves—can
also be determined via integration of the pressure over the ship hull. This alternative ‘nearfield approach’ defines
the wave drag as

CW ≡ DW

ρV 2
s L2

ref

= −2
∫ ∫

H0

dx̃ d̃z
∂b(̃x, z̃)

∂ x̃
pa (̃x, z̃), (32a)

where pa (̃x, z̃) is the pressure p̃a given by (28)–(31). The hydrodynamic lift F Z and pitch moment MY exerted by
the flowing water upon the ship hull are given by the analogous expressions

C L ≡ F Z

ρV 2
s L2

ref

= 2
∫ ∫

H0

dx̃ d̃z
∂b(̃x, z̃)

∂ z̃
pa (̃x, z̃), (32b)

C M ≡ MY

ρV 2
s L3

ref

= −2
∫ ∫

H0

dx̃ d̃z

(
x̃
∂b(̃x, z̃)

∂ z̃
− z̃

∂b(̃x, z̃)

∂ x̃

)
pa (̃x, z̃). (32c)

The related sinkage h and trim angle t are given by

h ≡ 
Z/L ref ≈ −F2C L/aW
0 , t ≈ −F2C M/aW

2 , (32d)

where aW
0 ≡ AW

0 /L2
ref and aW

2 ≡ AW
2 /L4

ref stand for the nondimensional area and moment of inertia, with respect
to the x axis, of the waterplane of the ship at rest. Specifically, we have

aW
0 = 2

x B∫

x S

dx b(x, z = 0), aW
2 = 2

x B∫

x S

dxx2b(x, z = 0), (32e)

where 2b(x, z = 0) is the local beam at the top waterline z = 0, and x S and x B stand for the x coordinates of the
ship stern and bow, respectively. In (32d), a positive sinkage 0 < h and a positive trim angle 0 < t correspond to a
downward displacement and a bow-up rotation of the ship hull, respectively. Furthermore, expression (32d) for the
trim angle t presumes that the origin of the system of coordinates is taken at the centroid of the waterplane of the
ship at rest.

Figure 15 shows the pressure p̃W + p̃SL
a + p̃L

r , evaluated as in the previous section and already depicted in
Fig. 14, for −6 ≤ x̃ ≤ 1 at the top waterline z̃ = 0 (for which p̃ is identical to the free-surface elevation ẽ) and the
bottom waterline z̃ = −1. Figure 15 also shows the pressure p̃W + p̃SL

a evaluated using (28)–(31), and multiplied
by 2π/ tan α in accordance with (26). The wedge-shaped bow considered here is located between the vertical lines
x = 0 and x = −4 shown in Fig. 15. Four draft-based Froude numbers are considered: F = 0.5 (top left corner),
F = 1 (bottom left), F = 2 (top right) and F = 4 (bottom right). The pressure p̃W + p̃SL

a + p̃L
r and the related

approximation p̃W + p̃SL
a , respectively identified by lines or symbols (circles or triangles) in Fig. 15, cannot be

distinguished, except for x = 0 and x = −4. Specifically, the logarithmic singularities at x = 0 and x = −4
associated with the singular terms 1/r and 1/r1 in (27b) do not occur in (30). Figure 15 shows that the remainder
GL

r in (22) can be neglected, as already verified in Fig. 14, and that the singular terms 1/r3 and 1/r3
1 in (30b) and

the term F2/r1 in (30a) and (30b) can be regularized in accordance with (31).
A uniform distribution of triangular panels is used in the calculations reported in Fig. 15. Specifically, the bow

region −4 ≤ x ≤ 0,−1 ≤ z ≤ 0 is divided into 80 vertical strips of constant width 
x = 0.05 and 20 horizontal
strips of constant height 
z = 0.05, i.e., 1600 squares and 3200 triangles. The small positive real number hp in
(31b) is taken as hp = C σ where σ = 0.05 stands for the size of the triangular panels. Two values of the ratio
C ≡ hp/σ equal to 2 and 1 were considered. No difference can be observed among the numerical predictions for
C = 2 and C = 1 except in the vicinities of x = 0 and x = −4, where smaller values of C yield results that
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more closely approach the logarithmic singularity associated with the singular terms 1/r and 1/r1 in (27b). The
calculations reported in Fig. 15 correspond to C = 1.

Expressions (28)–(32) provide a practical basis for evaluating the pressure at the hull of a thin ship, the free-
surface elevation along the ship hull (and path), the wave drag, the hydrodynamic lift and pitch moment, and the
related sinkage and trim experienced by the moving ship. The Fourier integral (29a) and the integrals (30a) and
(29b) or (29d) only involve continuous elementary (trigonometric and algebraic) functions of real arguments that
can be integrated in a straightforward and efficient way. In particular, the hull centerplane H0 can be divided into a
set of elements Hp, e.g. triangular elements. The pressure p̃ can then be evaluated at the vertices of the triangles,
and integration over each triangle Hp can be performed using a straightforward quadrature rule, e.g. the 7-point
rule [19]. For a nonuniform discretization of the ship centerplane H0 into triangular elements Hp, the small positive
real number hp in (31b) can be taken equal to the average size of the triangular elements that surround the vertex
of the particular triangle where p̃ is evaluated.

10 Application to the Wigley hull

For purposes of illustration, (28)–(32) are now applied to the Wigley hull, for which the local beam b is given by

b(x, z) = (1 − 4x2)(1 − 256z2)/20 with − 1/2 ≤ x ≤ 1/2 and − 1/16 ≤ z ≤ 0.

Here, the reference length L ref is chosen as the length Ls of the Wigley hull. The centerplane H0 of the Wigley hull is
divided into 140 vertical strips of equal width
x ≈ 0.007 and 10 horizontal strips of constant height
z = 0.006,
i.e., 1400 squares and 2800 triangles.

Figure 16 depicts the elevation e ≡ Eg/V 2
s of the wave profile predicted by thin-ship theory (solid line) and

measured (square symbols) at the University of Tokyo [20, 21] for the Wigley hull at six Froude numbers F = 0.25,
0.267, 0.289, 0.316, 0.354 and 0.408. Figure 16 shows that the bow wave height etheory

b predicted by thin-ship theory
is lower than the measured height eexp

b , notably at higher Froude numbers F . The measured and predicted heights

eexp
b and etheory

b of the bow waves in Fig. 16, and the corresponding relative differences, are approximately equal to

F 0.25 0.267 0.289 0.316 0.354 0.408
eexp

b 0.20 0.18 0.17 0.16 0.15 0.14

etheory
b 0.174 0.162 0.149 0.134 0.117 0.099

diff −13 % −10 % −12% −16 % −22% −30 %

Thus, for a fine ship bow, thin-ship theory may be expected to underpredict the height of the bow wave by approx-
imately 10% to 30% for Froude numbers in the range 0.25 ≤ F ≤ 0.4. Figure 16 also shows that the thin-ship
wave profile is more oscillatory than the measured profile. Furthermore, phase differences between the thin-ship
and measured wave profiles can be observed.

Figure 17 shows the wave drag coefficient

CW ≡ DW

ρ V 2
s AH/2

≡ CW L2
ref

AH/2
,

where AH stands for the wetted area of the Wigley hull, measured at the University of Tokyo and the Ship Research
Institute [20, 21] and predicted by thin-ship theory (comparisons between theoretical predictions and experimental
measurements of wave drag are affected by issues related to the experimental determination of the wave drag in a
viscous fluid, as well known) using both the farfield Havelock relation (29e) and the nearfield pressure-integration
formula (32a). These alternative theoretical predictions cannot be distinguished in Fig. 17. The wave drag predicted
by thin-ship theory is considerably more oscillatory than the measured wave drag, and we can observe significant
phase differences between the theoretical and experimental wave-drag curves. The left and right sides of Fig. 18
show the sinkage and trim given by (32b)–(32e) and measured [20, 21]. The sinkage predicted by thin-ship theory
is in excellent agreement with measurements. Thin-ship theory also predicts that the trim is small for F < 0.35 but
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Fig. 16 Elevation e ≡ E g/V 2
s of the wave profile predicted by thin-ship theory (solid line) and measured (square symbols) at the

University of Tokyo for the Wigley hull at six Froude numbers F = 0.25, 0.267, 0.289, 0.316, 0.354 and 0.408

increases rapidly for 0.35 < F , in agreement with measurements. The limitations of thin-ship theory displayed in
Figs. 16–18 are well known and well documented in the literature, e.g. [8–10].

11 Bow waves generated by wedge-shaped ship bows

The two-parameter family of wedge-shaped ship bows considered in [1] corresponds to the special case � = ∞.
This special case is now considered further for z̃ = 0, for which we have p̃ ≡ ẽ. In the limit � = ∞, we have
S̃� = 0 in (27a) and the contribution for x = −� in (27b) is null. The simple Green function Ga ≡ GW + GSL

a
given by (25), (23) and (12) is used. Thus, (27a) and (27b) yield

ẽa

2π
≈ ẽW + ẽSL

a

2π
= − 4

π

∞∫

0

dt
1 − e−(1+t2)/F2

1 + t2 sin(
√

1 + t2 x̃/F2)

+ 1

π

0∫

−1

dz

F2 + r1

[
1 + F2ψ

F2 + r1

(
1 + 2.3ψr1

F2 + r1

)]
(33)
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Fig. 17 Wave-resistance
coefficient CW measured at
the University of Tokyo and
the Ship Research Institute,
and predicted by thin-ship
theory using the farfield
Havelock relation (29e) and
the nearfield
pressure-integration
formula (32a)
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Fig. 18 Experimental measurements and predictions given by thin-ship theory of the sinkage h ≡ 
 Z/L ref and trim t for the Wigley
hull

with r1 = √
z2+ x̃2 andψ = −z/(r1 +|̃x |). The free-surface elevation ẽa/(2π) given by (33) is depicted in Fig. 19

as a function of x/F2 ≡ Xg/V 2
s for F/(1 + F) = 0.1, 0.2, . . . , 0.9. Figure 20 depicts the free-surface elevation

(1 + F )̃ea/(2π) as a function of (1 + F)x/F2, as suggested by the approximations

Zb g/V 2
s

tan α
≈ 2.2

1 + F
, −Xb g/V 2

s ≈ 1.1

1 + F
, (34)

given in [1]. Here, Zb and −Xb stand for the elevation and the location of the bow wave crest.
The thin-ship theory predictions of the height (Zb g/V 2

s )/ tan α and the location −Xb g/V 2
s of the bow wave are

shown in Figs. 21 and 22, respectively, as functions of F/(1 + F). These predictions of the bow-wave height and
location are determined by numerically finding the crest of the bow waves (like those depicted in Fig. 20) predicted
by thin-ship theory for every value of the (draft-based) Froude number F . Figures 21 and 22 also show the simple
approximations (34), obtained in [1] using fundamental considerations (dimensional analysis and elementary asymp-
totic considerations) and experimental measurements (for wedge-shaped bows and a rectangular flat plate). Several
sets of experimental measurements for wedge-shaped ship bows considered in [1] are also shown in Figs. 21 and 22.

The ratios Z thin
b /Zdata

b and X thin
b /Xdata

b of the bow-wave heights Zb and locations −Xb predicted by thin-ship
theory and the simple expressions (34) based on experimental data are depicted in Fig. 23 for 0 < F/(1 + F) < 1.
The region 0.3 ≤ F/(1 + F) ≤ 0.7 between the two vertical lines shown in this figure approximately corresponds
to the range 0.4 ≤ F ≤ 2.3. For a typical ship with length/draft ratio Ls/D ≈ 20, this range approximately corre-
sponds to length-based Froude numbers FL in the range 0.09 ≤ FL ≤ 0.56, for which wavemaking is significant.
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Fig. 19 Free-surface elevation ẽa/(2π) as a function
of x/F2 ≡ Xg/V 2

s for wedge-shaped bows without
rake or flare
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Fig. 20 Free-surface elevation (1 + F )̃ea/(2π) as a function of
(1 + F)x/F2 for wedge-shaped bows without rake or flare
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Fig. 21 Bow wave height (gZb/V 2
s )/ tan α given by (34) or by

thin-ship theory for wedge-shaped bows without rake or flare
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Fig. 22 Location (−Xb g/V 2
s ) of bow wave crest given by (34)

or by thin-ship theory for wedge-shaped bows without rake or
flare

Figure 23 shows that, within this ‘wavemaking regime’, the ratios Z thin
b /Zdata

b and X thin
b /Xdata

b are approximately
comprised between 0.8 and 1.3. For a fine wedge-shaped ship bow, differences between the bow-wave heights and
locations predicted by thin-ship theory and the data-based expressions (34) then vary approximately within the
range ±25%. Thus, for many practical purposes, notably for our purpose and for concept and preliminary design,
thin-ship theory is a reasonable and useful approximation, as well documented in the literature, e.g. [5–10]. The
ratios Z thin

b /Zdata
b and X thin

b /Xdata
b are also listed below
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Fig. 23 Ratios Z thin
b /Zdata

b
and X thin

b /Xdata
b of the

bow-wave heights Zb and
locations Xb predicted by
thin-ship theory and the
analytical relations (34)
based on experimental data
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Zb
thin/Zb

data

F/(1 + F) 0.3 0.4 0.5 0.6 0.7 0.8
Z thin

b /Zdata
b 1.28 1.23 1.12 0.96 0.79 0.64

X thin
b /Xdata

b 0.96 1.13 1.26 1.29 1.21 1.07

for 0.3 ≤ F/(1+ F) ≤ 0.8, which approximately corresponds to 0.1 ≤ FL ≤ 0.9 for typical ships with length/draft
ratio Ls/D ≈ 20. Figure 23 and the related foregoing table, and the bow waves shown in Fig. 16, provide an indi-
cation of the accuracy that can reasonably be expected from thin-ship theory, and also provide a basis for roughly
correcting bow-wave predictions given by thin-ship theory.

12 Application to ruled ship bows with rake and flare

Thin-ship theory is now used to evaluate steady flow about a fine ship bow with rake and flare. Specifically, a ruled
ship bow of draft D and semi-infinite length is considered, as illustrated in Fig. 24. The draft D of the bow is chosen
as reference length L ref in (1) and (2). The Froude number is then given by F ≡ Vs/

√
gD (the draft-based Froude

number). The hull centerplane H0 consists of the semi-infinite rectangular region −∞ ≤ x ≤ 0, −1 ≤ z ≤ 0.
The hull bottom is flat and contained in the horizontal plane z = −1. The ship stem intersects the ship centerplane
y = 0 along the straight line x = µz with −1 ≤ z ≤ 0 and

µ ≡ tan δ. (35)

Here, δ stands for the rake angle, which can be positive or negative, as shown in Fig. 24. The hull sides intersect
the mean free surface z = 0 and the hull bottom z = −1 along the straight lines y = ± σ x with x ≤ 0, and
y = ± σ ′(x + µ) with x ≤ −µ, respectively. Here, σ and σ ′ are defined as

σ ≡ tan α σ ′ ≡ tan α′ (36)

where 2α and 2α′ stand for the entrance angles of the waterlines at the mean free surface z = 0 and at the hull
bottom z = −1, respectively. The hull sides are defined by y = ± b(x, z) where

b(x, z) = −[σ(1 + z)− σ ′z](x − µz) with x ≤ µz and − 1 ≤ z ≤ 0. (37)

Expressions (37) define a family of ship hulls that depend on four parameters: the top-waterline half entrance angle
α, the bottom-waterline half entrance angle α′, the rake angle δ, and the draft D. Steady flow about this four-
parameter family of ship hulls similarly depends on four parameters: α, α′, δ, and the draft-based Froude number
F . Figure 1 shows the hulls defined by (37) with δ = 45◦, α = 15◦, α′ = 5◦ or δ = −45◦, α = 5◦, α′ = 15◦.
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2α

δ>02α

2α

δ<0
2α

Fig. 24 Four-parameter family of ship bows defined by the draft D, the top-waterline entrance angle 2α, the bottom-waterline entrance
angle 2α′, and the rake angle δ

The slope bx of the hull (37) is given by −bx = σ + (σ − σ ′)z with x ≤ µz and −1 ≤ z ≤ 0. Expression (5)
then yields

p̃ = −2

0∫

−1

dz

µz∫

−∞
dx [σ + (σ − σ ′)z]∂G

∂x
= −2

0∫

−1

dz [σ + (σ − σ ′)z]Ĝ

with

Ĝ ≡ Ĝ(z; x̃, z̃) ≡ G(x = µz, 0, z; x̃, 0, z̃).

The simple Green function Ga ≡ GW + GSL
a given by (25), (23) and (12) is used, in accordance with the results

shown in Sect. 8 and depicted in Fig. 14. We then have

p̃ = σ p̃0 + (σ − σ ′) p̃1 ≈ σ( p̃SL
0 + p̃W

0 )+ (σ − σ ′)( p̃SL
1 + p̃W

1 ), (38)

where the components (·)SL and (·)W correspond to the local-flow component GSL
a and the wave component GW

in (25) and are defined as
{

p̃SL
0 + p̃W

0

p̃SL
1 + p̃W

1

}

≡ −2

0∫

−1

dz

{
1

z

}

(ĜSL
a + ĜW ) ≡

{
p̃0

p̃1

}

. (39)

A useful alternative form of (38) is

p̃ = σ̂ [ p̃0 + ϕ( p̃0 + 2 p̃1)] ≡ σ̂ p̃∗, (40)

where σ̂ and ϕ are defined as

σ̂ ≡ σ + σ ′

2
≡ tan α + tan α′

2
, −1 ≤ ϕ ≡ σ − σ ′

σ + σ ′ ≤ 1. (41)

The parameter σ̂ represents an ‘average entrance angle’, and the parameter ϕ is associated with the hull flare. We
have ϕ = 1 if α′ = 0, ϕ = 0 if α′ = α, and ϕ = −1 if α = 0. Henceforth the parameter ϕ is referred to as the
hull flare for convenience, although ϕ is not identical to the flare angle; in fact, a rake angle δ �= 0 results in flare
even if ϕ = 0. Thus, the flow under consideration, which depends on the four parameters α, α′, δ and F as already
noted, is expressed by (40) as the product of the ‘average entrance angle’ σ̂ and the function p̃∗ that depends on the
three variables F , δ and ϕ. More precisely, the function p̃∗ is expressed by (40) in terms of the hull flare ϕ and two
functions p̃0 and p̃1 that depend on the (draft-based) Froude number F and the rake angle δ.

Expressions (39) and (23) yield
{

p̃SL
0

p̃SL
1

}

= 1

2π

0∫

−1

dz

{
1

z

}[
1

r
− 1

r1
+ 2

F2 + r1
+ 2F2ψ

(F2 + r1)2

(
1 + 2.3ψr1

F2 + r1

)]
(42a)

with

r ≡
√
(µz − x̃)2 + (z − z̃)2, r1 ≡

√
(µz − x̃)2 + (z + z̃)2, (42b)
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and

ψ ≡ −(z + z̃)/(r1 + |µz − x̃ |). (42c)

In the special case µ = 0, the function 2π p̃SL
0 is identical to the function p̃SL

a defined by (27b) with � = ∞.
Expressions (39) and (12) yield

{
p̃W

0

p̃W
1

}

= −4

π

∞∫

0

dt
eT 2̃z/F2

T

{
A0

A1

}

with T ≡
√

1 + t2, (43)

{
A0

A1

}

= Im ei T x̃/F2

{
I0

I1

} {
I0

I1

}

= T

F2

0∫

−1

dz

{
1

z

}

e(T −iµ)T z/F2
H(µz − x̃). (44)

The step function H(µz − x̃) in (44) readily yields
{

p̃W
0

p̃W
1

}

= 0 for

{
0 ≤ x̃

−µ ≤ x̃

}
if

{
0 < µ

µ < 0

}

, (45)

{
I0

I1

}

= T

F2

0∫

−1

dz

{
1

z

}

e(T −iµ)T z/F2
for

{
x̃ ≤ −µ
x̃ ≤ 0

}

if

{
0 < µ

µ < 0

}

,

{
I0

I1

}

= T

F2

0∫

x̃/µ

dz

{
1

z

}

e(T −iµ)T z/F2
for − µ ≤ x̃ ≤ 0 if 0 < µ,

{
I0

I1

}

= T

F2

x̃/µ∫

−1

dz

{
1

z

}

e(T −iµ)T z/F2
for 0 ≤ x̃ ≤ −µ if µ < 0.

These expressions for I0 and I1 and the relations

T

F2

b∫

a

dz z e(T −iµ)T z/F2 = T∗
[

e(T −iµ)T z/F2
(

z − F2T∗
T

)]b

a
and

T

F2

b∫

a

dz e(T −iµ)T z/F2 = T∗
[
e(T −iµ)T z/F2

]b

a
with T∗ ≡ T + iµ

T 2 + µ2

yield

I0 = T∗
(

1 − e−(T −iµ)T/F2
)

I1 = T∗
[(

F2T∗
T

+ 1

)
e−(T −iµ)T/F2 − F2T∗

T

]

for x̃ ≤ −µ if 0 < µ and for x̃ ≤ 0 if µ < 0,

I0 = T∗
(

1 − e(T/µ−i)T x̃/F2
)

I1 = T∗
[(

F2T∗
T

− x̃

µ

)
e(T/µ−i)T x̃/F2 − F2T∗

T

]

for −µ ≤ x̃ ≤ 0 if 0 < µ,

I0 = T∗
(

e(T/µ−i)T x̃/F2 − e−(T −iµ)T/F2
)
,
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I1 = T∗
[(

F2T∗
T

+ 1

)
e−(T −iµ)T/F2 −

(
F2T∗

T
− x̃

µ

)
e(T/µ−i)T x̃/F2

]

for 0 ≤ x̃ ≤ −µ if µ < 0.
The foregoing expressions for I0 and I1 show that the amplitude functions A0 and A1 defined by (44) are given

by

A0(T 2 + µ2) = T (S̃ − E S̃∗)+ µ(C̃ − EC̃∗)
A1(T 2 + µ2)2 = (T 2 + µ2) E(T S̃∗ + µC̃∗)+ F2(T − µ2/T )(E S̃∗ − S̃)+ 2F2µ(EC̃∗ − C̃)

}

(46a)

for x̃ ≤ −µ if 0 < µ and for x̃ ≤ 0 if µ < 0, or by

A0(T 2 + µ2) = T S̃ + µ(C̃ − E∗)
A1(T 2 + µ2)2 = 2F2µ(E∗ − C̃)− F2(T − µ2/T )S̃ − (T 2 + µ2)̃x E∗

}
(46b)

for −µ ≤ x̃ ≤ 0 if 0 < µ, or by

A0(T 2 + µ2) = µ(E∗ − EC̃∗)− T E S̃∗
A1(T 2 + µ2)2 = F2(T − µ2/T ) E S̃∗ + 2F2µ(EC̃∗ − E∗)

+(T 2 + µ2)(T E S̃∗ + µE C̃∗ + x̃ E∗)

⎫
⎪⎬

⎪⎭
(46c)

for 0 ≤ x̃ ≤ −µ if µ < 0. In (46a)–(46c), C̃ , S̃, C̃∗, S̃∗, E and E∗ stand for the functions
{

C̃

S̃

}

=
{

cos(T x̃/F2)

sin(T x̃/F2)

}

,

{
C̃∗
S̃∗

}

=
{

cos[T (̃x + µ)/F2]
sin[T (̃x + µ)/F2]

}

,

{
E

E∗

}

=
{

exp(−T 2/F2)

exp[(̃x/µ)T 2/F2]

}

. (46d)

In the special case µ = 0, expression (46a) for A0 yields A0 = (1 − E)S̃/T and the function 2π p̃W
0 defined by

(43) is identical to the function p̃W defined by (27a) with � = −∞.
In summary, thin-ship theory, with the simplified Green function given by (25), (23) and (12), shows that the

pressure p̃ at a flow-field point (̃x, 0, z̃) of the four-parameter family of ship hulls (37) is given by (38), (42), (43),
(45) and (46).

13 Parametric study of rake and flare effects on bow wave

The free-surface elevation ẽ along the hull, obtained by setting z̃ = 0 in (42) and (43), is now considered for
0.3 ≤ F/(1 + F) ≤ 0.8, −60◦ ≤ δ ≤ 60◦ and −1 ≤ ϕ ≤ 1. The range 0.3 ≤ F/(1 + F) ≤ 0.8 approximately cor-
responds to draft-based Froude numbers F in the range 0.43 ≤ F ≤ 4 and, for a typical ship with length/draft ratio
Ls/D ≈ 20, to length-based Froude numbers FL in the approximate range 0.1 ≤ FL ≤ 0.9. This Froude-number
range and the ranges −60◦ ≤ δ ≤ 60◦ and −1 ≤ ϕ ≤ 1 encompass most practical cases.

Expressions (40) and (41) yield

ẽ = tan α + tan α′

2
{ p̃0(̃x ; F, δ)+ ϕ[ p̃0(̃x ; F, δ)+ 2 p̃1(̃x ; F, δ)]}. (47a)

This relation yields

ẽ = tan
α + α′

2
p̃0(̃x ; F, δ = 0) if δ = 0 and ϕ = 0. (47b)

The crest of the bow waves defined by (47a) and (47b) are determined by numerically finding the highest value of
the free-surface elevation ẽ. The ratio of the heights of the bow waves defined by (47a) and (47b) is given by

tan α + tan α′

2 tan[(α + α′)/2] ζb(F, δ, ϕ) (48a)

with

ζb(F, δ, ϕ) = max{ p̃0(̃x ; F, δ)+ ϕ[ p̃0(̃x ; F, δ)+ 2 p̃1(̃x ; F, δ)]}
max{ p̃0(̃x ; F, δ = 0)} . (48b)
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The locations of the crests of the bow waves (47a) and (47b) are defined by Xb(F, δ, ϕ) and Xb(F, δ = 0, ϕ = 0).
The function ζb(F, δ, ϕ) defined by (48b) and the function

ξb(F, δ, ϕ) ≡ Xb(F, δ, ϕ)/Xb(F, δ = 0, ϕ = 0) (48c)

quantify the variations of the bow-wave height Zb and location −Xb due to the rake angle δ and the hull flare ϕ.
The relations (48) and (34) yield

Zb g

V 2
s

≈ (tan α + tan α′) 1.1

1 + F
ζb(F, δ, ϕ),

−Xb g

V 2
s

≈ 1.1

1 + F
ξb(F, δ, ϕ) (49a)
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Fig. 25 Variations of the functions ζb (left column) and ξb (right) defined by (48b) and (48c) with respect to the draft-based Froude
number F in the range 0.3 ≤ F/(1 + F) ≤ 0.8 for three rake angles δ = 45◦, 0◦,−45◦ (top, center and bottom rows) and five hull
flares ϕ = 1, 0.5, 0,−0.5,−1
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Fig. 26 Variations of the functions ζb (left column) and ξb (right) defined by (48b) and (48c) with respect to the rake angle −60◦ ≤
δ ≤ 60◦ for three Froude numbers F/(1 + F) = 0.3, 0.5, 0.7 (top, center and bottom rows) and five hull flares ϕ = 1, 0.5, 0,−0.5,−1

with

F ≡ Vs√
gD

and ϕ ≡ tan α − tan α′

tan α + tan α′ . (49b)

In the special case δ = 0 and ϕ = 0, we have ζb = 1 and ξb = 1, and (49) and (34) are identical as expected. Expres-
sions (49) account for the effect of the rake angle δ and the flare parameter ϕ on the bow-wave height Zb and location
−Xb via the functions ζb(F, δ, ϕ) and ξb(F, δ, ϕ). More precisely, these two functions—determined using thin-ship
theory—provide corrections to the relations (34), obtained in [1, 2] using simple fundamental considerations and
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Fig. 27 Variations of the functions ζb (left column) and ξb (right) defined by (48b) and (48c) with respect to the hull flare −1 ≤ ϕ ≤ 1
for three Froude numbers F/(1 + F) = 0.3, 0.5, 0.7 (top, center and bottom rows) and five rake angles δ = 60◦, 30◦, 0◦,−30◦,−60◦

experimental data. The thin-ship corrections for rake and flare provided by the functions ζb and ξb could also be
applied to the bow-wave height and location predicted by thin-ship theory, and depicted in Figs. 21–23. The relations
(34) are used in (49) because they are simpler, and because Figs. 21–22 suggest that (34) can be expected to be
more accurate—notably for the bow-wave height Zb—than the thin-ship predictions.

The functions ζb and ξb defined by (48b) and (48c) are depicted in the left and right columns of Figs. 25–27.
Figure 25 shows the variations of the functions ζb and ξb with respect to the (draft-based) Froude number F in the
range 0.3 ≤ F/(1 + F) ≤ 0.8 for three rake angles δ = 45◦, 0◦,−45◦ (top, center and bottom rows) and five
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hull flares ϕ = 1, 0.5, 0,−0.5,−1. Figure 26 depicts the variations of the functions ζb and ξb with respect to the
rake angle δ in the range −60◦ ≤ δ ≤ 60◦ for F/(1 + F) = 0.3, 0.5, 0.7 (top, center and bottom rows) and five
hull flares ϕ = 1, 0.5, 0,−0.5,−1. Figure 27 similarly depicts the variations of ζb and ξb with respect to the flare
parameter ϕ in the range −1 ≤ ϕ ≤ 1 for F/(1 + F) = 0.3, 0.5, 0.7 (top, center and bottom rows) and five rake
angles δ = 60◦, 30◦, 0◦,−30◦,−60◦.

The values of the functions ζb and ξb defined by (48b) and (48c) are listed in Tables 1a–f and 2a–f for six values
of the draft-based Froude number F that correspond to F/(1 + F) = 0.3, 0.4, …, 0.8, nine values of the hull flare
parameter ϕ = 1, 0.75, . . . ,−1 and nine rake angles δ = 60◦, 45◦, . . . ,−60◦. The values of the functions ζb and
ξb for arbitrary values of F , ϕ and δ in the ranges 0.3 ≤ F/(1 + F) ≤ 0.8, −1 ≤ ϕ ≤ 1, −60◦ ≤ δ ≤ 60◦ can
be determined via interpolation of the values given in Tables 1a–f and 2a–f. In the special case δ = 0 and ϕ = 0,
Tables 1a–2f and Figs. 25–27 show that we have ζb = 1 and ξb = 1 as expected. The relations (49) and the 12
Tables 1a–f and 2a–f of values of the functions ζb and ξb provide estimates—immediately useful for design—of
the influence of rake and flare on the height Zb and the location −Xb of a ship bow wave.

Tables 1a–f and 2a–f and Figs. 25–27 also show that effects of rake and flare can be significant, especially at
low Froude numbers. In particular, the left side of Fig. 27 and Table 1a–f show that ζb is a monotonically increasing
function of the hull flare parameter ϕ within the range −1 ≤ ϕ ≤ 1, for every value of the Froude number F and
the rake angle δ, as we would intuitively expect. Specifically, Table 1a–f shows that the smallest and largest values
ζmin

b and ζmax
b of ζb are attained for ϕ = −1 and ϕ = 1, respectively, and are equal to

F/(1 + F) 0.3 0.4 0.5 0.6 0.7 0.8,
ζmax

b 1.63 1.56 1.50 1.43 1.37 1.33,
ζmin

b 0.24 0.39 0.60 0.75 0.82 0.84.

These values substantially differ from 1, especially for small values of F . Thus, flare can have significant influence
on the height Zb of a ship bow wave, and this influence clearly is more important at smaller Froude numbers. The
right side of Fig. 26 and Table 2a–f show that ξb is a monotonically increasing function of the rake angle δ within the
range −60◦ ≤ δ ≤ 60◦, for every value of the Froude number F and the flare parameter ϕ, as we would also expect
intuitively. Specifically, Table 2a–f shows that the smallest and largest values ξmin

b and ξmax
b of ξb are attained for

δ = −60◦ and δ = 60◦, respectively, and are equal to

F/(1 + F) 0.3 0.4 0.5 0.6 0.7 0.8,
ξmax

b 4.12 3.45 2.81 2.30 2.00 1.79,
ξmin

b −5.50 −1.27 0.24 0.42 0.49 0.56.

These values also substantially differ from 1, especially for small values of F . Rake can then have significant
influence on the location −Xb of a ship bow wave, and this influence is more important at smaller Froude
numbers.

14 Conclusion

Two practical results, useful for ship design at early stages, have been reported. One of these two results is a straight-
forward mathematical basis, given by (28)–(32), for numerically evaluating—within the context of the thin-ship
theory of steady flow about a ship in deep water—the pressure at the hull of a ship, the free-surface elevation along
the ship hull and path, the wave drag, the hydrodynamic lift and pitch moment, and the related sinkage and trim. This
mathematical basis only involves continuous elementary (trigonometric and algebraic) functions of real arguments
that can be integrated in a straightforward and efficient way using ordinary quadrature rules. A Fortran code based
on the mathematical formulation given by (28)–(32) can evaluate the pressure distribution at a ship hull, discretized
into 10,000 flat triangles, in less than 10 s per ship speed using a common PC, i.e., fast enough to be of practical
use for ship design.

The main ingredient of the flow representation (28)–(32) is a remarkably simple Green function. This ‘thin-ship
theory’ Green function, for which we have y − ỹ = 0, is given by
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Table 1 Function ζb(F, δ, ϕ) defined by (48b) for (a) F/(1+F) = 0.3, (b) F/(1+F) = 0.4, (c) F/(1+F) = 0.5, (d) F/(1+F) = 0.6,
(e) F/(1 + F) = 0.7, and (f) F/(1 + F) = 0.8

ϕ ↓ δ → 60◦ 45◦ 30◦ 15◦ 0◦ −15◦ −30◦ −45◦ −60◦

(a) F/(1 + F) = 0.3

1 1.06 1.26 1.41 1.51 1.57 1.62 1.63 1.58 1.40

0.75 0.95 1.14 1.28 1.37 1.43 1.47 1.47 1.42 1.25

0.5 0.85 1.02 1.15 1.23 1.29 1.32 1.31 1.25 1.10

0.25 0.74 0.90 1.02 1.10 1.14 1.17 1.15 1.09 0.94

0 0.64 0.78 0.89 0.96 1.00 1.01 1.00 0.93 0.79

−0.25 0.53 0.66 0.76 0.83 0.86 0.86 0.84 0.77 0.64

−0.5 0.43 0.55 0.63 0.69 0.71 0.71 0.68 0.61 0.49

−0.75 0.34 0.44 0.51 0.56 0.57 0.56 0.52 0.44 0.34

−1 0.27 0.36 0.41 0.43 0.43 0.41 0.37 0.30 0.24

(b) F/(1 + F) = 0.4

1 1.05 1.20 1.31 1.38 1.44 1.49 1.53 1.56 1.49

0.75 0.95 1.10 1.20 1.27 1.33 1.38 1.41 1.43 1.35

0.5 0.86 1.00 1.10 1.17 1.22 1.26 1.29 1.29 1.20

0.25 0.77 0.91 1.00 1.06 1.11 1.15 1.17 1.16 1.05

0 0.68 0.81 0.90 0.96 1.00 1.03 1.05 1.03 0.90

−0.25 0.59 0.72 0.80 0.85 0.89 0.92 0.93 0.90 0.75

−0.5 0.52 0.63 0.71 0.75 0.79 0.81 0.81 0.77 0.61

−0.75 0.45 0.56 0.62 0.66 0.68 0.70 0.69 0.64 0.46

−1 0.42 0.50 0.55 0.57 0.58 0.59 0.57 0.52 0.39

(c) F/(1 + F) = 0.5

1 1.05 1.16 1.23 1.28 1.32 1.36 1.41 1.46 1.50

0.75 0.97 1.08 1.15 1.20 1.24 1.28 1.32 1.37 1.40

0.5 0.89 1.00 1.07 1.12 1.16 1.20 1.23 1.27 1.30

0.25 0.82 0.93 0.99 1.04 1.08 1.11 1.15 1.18 1.20

0 0.75 0.86 0.92 0.96 1.00 1.03 1.06 1.09 1.10

−0.25 0.70 0.80 0.85 0.89 0.93 0.95 0.98 1.00 0.99

−0.5 0.65 0.74 0.79 0.83 0.85 0.88 0.90 0.92 0.89

−0.75 0.62 0.70 0.74 0.77 0.79 0.81 0.82 0.83 0.79

−1 0.60 0.67 0.70 0.71 0.73 0.74 0.74 0.74 0.69

(d) F/(1 + F) = 0.6

1 1.07 1.15 1.19 1.23 1.26 1.29 1.32 1.36 1.43

0.75 1.00 1.08 1.12 1.16 1.19 1.22 1.25 1.29 1.35

0.5 0.94 1.02 1.06 1.09 1.12 1.15 1.18 1.22 1.28

0.25 0.89 0.96 1.00 1.03 1.06 1.09 1.11 1.15 1.21

0 0.84 0.91 0.95 0.98 1.00 1.02 1.05 1.08 1.13

−0.25 0.81 0.87 0.90 0.92 0.95 0.97 0.99 1.02 1.06

−0.5 0.78 0.83 0.86 0.88 0.90 0.91 0.93 0.96 0.99

−0.75 0.76 0.80 0.83 0.84 0.86 0.87 0.88 0.90 0.92

−1 0.75 0.78 0.80 0.81 0.82 0.83 0.84 0.84 0.85

(e) F/(1 + F) = 0.7

1 1.11 1.16 1.19 1.22 1.24 1.26 1.28 1.31 1.37

0.75 1.04 1.10 1.13 1.15 1.17 1.19 1.21 1.25 1.30
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Table 1 continued

ϕ ↓ δ → 60◦ 45◦ 30◦ 15◦ 0◦ −15◦ −30◦ −45◦ −60◦

0.5 0.99 1.04 1.07 1.09 1.11 1.13 1.15 1.18 1.23

0.25 0.94 0.98 1.01 1.03 1.05 1.07 1.09 1.12 1.17

0 0.90 0.94 0.97 0.98 1.00 1.02 1.04 1.06 1.10

−0.25 0.87 0.90 0.93 0.94 0.95 0.97 0.98 1.01 1.04

−0.5 0.85 0.87 0.89 0.91 0.92 0.93 0.94 0.96 0.99

−0.75 0.83 0.85 0.87 0.88 0.88 0.89 0.90 0.92 0.94

−1 0.82 0.84 0.85 0.85 0.86 0.86 0.87 0.88 0.89

(f) F/(1 + F) = 0.8

1 1.16 1.20 1.22 1.23 1.25 1.26 1.27 1.29 1.33

0.75 1.09 1.13 1.15 1.16 1.18 1.19 1.20 1.23 1.26

0.5 1.03 1.07 1.09 1.10 1.11 1.12 1.14 1.16 1.19

0.25 0.98 1.01 1.03 1.04 1.05 1.06 1.08 1.10 1.13

0 0.94 0.96 0.98 0.99 1.00 1.01 1.02 1.04 1.07

−0.25 0.90 0.92 0.94 0.95 0.95 0.96 0.97 0.99 1.01

−0.5 0.87 0.89 0.90 0.91 0.92 0.92 0.93 0.94 0.96

−0.75 0.85 0.87 0.88 0.88 0.89 0.89 0.90 0.91 0.92

−1 0.84 0.85 0.86 0.86 0.86 0.87 0.87 0.88 0.89

4π G ≈ −1

r
+ 1

r1
− 2

F2 + r1
− 2F2ψ

(F2 + r1)2

(
1 + 2.3ψ r1

F2 + r1

)

+H(x − x̃)
8

F2 Im

∞∫

0

dt e(1+t2)(z+̃z)/F2−i
√

1+t2(x−x̃)/F2
(50a)

with

r = √
(x − x̃)2 + (z − z̃)2

r1 = √
(x − x̃)2 + (z + z̃)2

}

ψ = −(z + z̃)

r1 + |x − x̃ | F = Vs√
gL ref

, (50b)

as readily follows from (25), (23) and (12). The Green function (50) of thin-ship theory is considerably simpler
than the Green functions given in the literature, e.g. [11, 12, 17, 18]. In particular, the double integral that defines
the local flow component in the well-known representations given in the literature, e.g. [7–9, 11, 18], has been
approximated by a simple analytical expression, valid within the entire flow domain 0 ≤ r1 ≤ ∞, in (50). Although
the local-flow component in the approximate Green function (50) is not highly accurate, as shown in Fig. 13, the
calculations reported in the study show that the approximation (50) is sufficient. This result stems from two main
properties: (i) the contribution of the wave component in (50a) typically is more important than that of the local-flow
component, and (ii) the approximate local-flow component in (50a) is asymptotically correct in both the nearfield
and the farfield. An analogous Green function for evaluating steady flow due to a distribution of pressure at the free
surface, for which we have z + z̃ = 0, is reported in [22]. The general case y − ỹ �= 0 and z + z̃ �= 0 will also be
reported elsewhere.

Another practical result is the simple relations
Zb g

V 2
s

≈ (tanα + tanα′) 1.1

1+F
ζb(F, δ, ϕ),

−Xb g

V 2
s

≈ 1.1

1+F
ξb(F, δ, ϕ) (51a)

with

F ≡ Vs√
gD

and ϕ ≡ tanα − tanα′

tanα + tanα′ (51b)
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Table 2 Function ξb(F, δ, ϕ) defined by (48c) for (a) F/(1+F) = 0.3, (b) F/(1+F) = 0.4, (c) F/(1+F) = 0.5, (d) F/(1+F) = 0.6,
(e) F/(1 + F) = 0.7, and (f) F/(1 + F) = 0.8

ϕ ↓ δ → 60◦ 45◦ 30◦ 15◦ 0◦ −15◦ −30◦ −45◦ −60◦

(a) F/(1 + F) = 0.3

1 1.83 1.57 1.35 1.15 0.97 0.80 0.62 0.45 0.28

0.75 1.85 1.59 1.37 1.16 0.97 0.80 0.62 0.45 0.28

0.5 1.88 1.62 1.39 1.18 0.98 0.80 0.62 0.44 0.28

0.25 1.92 1.66 1.43 1.20 0.99 0.80 0.62 0.43 0.27

0 1.98 1.71 1.47 1.23 1.00 0.80 0.60 0.42 0.27

−0.25 2.08 1.81 1.54 1.27 1.02 0.80 0.59 0.41 0.26

−0.5 2.28 1.97 1.67 1.34 1.04 0.80 0.57 0.39 0.25

−0.75 2.74 2.32 1.91 1.47 1.10 0.80 0.53 0.33 0.21

−1 4.12 3.15 2.43 1.74 1.25 0.81 0.36 −0.96 −5.50

(b) F/(1 + F) = 0.4

1 1.62 1.37 1.19 1.03 0.90 0.77 0.63 0.47 0.30

0.75 1.66 1.41 1.21 1.06 0.91 0.78 0.63 0.47 0.30

0.5 1.71 1.45 1.26 1.09 0.94 0.79 0.63 0.47 0.29

0.25 1.79 1.53 1.31 1.13 0.96 0.80 0.64 0.45 0.28

0 1.91 1.62 1.39 1.18 1.00 0.82 0.64 0.45 0.26

−0.25 2.08 1.76 1.49 1.25 1.05 0.85 0.64 0.43 0.24

−0.5 2.36 1.97 1.62 1.35 1.11 0.88 0.64 0.41 0.21

−0.75 2.83 2.26 1.82 1.50 1.21 0.94 0.66 0.37 0.15

−1 3.45 2.62 2.08 1.69 1.35 1.02 0.67 0.25 −1.27

(c) F/(1 + F) = 0.5

1 1.41 1.18 1.03 0.91 0.82 0.73 0.63 0.52 0.36

0.75 1.48 1.24 1.08 0.96 0.85 0.75 0.65 0.52 0.36

0.50 1.57 1.31 1.14 1.01 0.89 0.78 0.67 0.53 0.35

0.25 1.70 1.41 1.21 1.07 0.94 0.82 0.69 0.54 0.35

0 1.87 1.53 1.31 1.14 1.00 0.87 0.72 0.55 0.34

−0.25 2.09 1.68 1.43 1.23 1.08 0.92 0.76 0.57 0.33

−0.50 2.33 1.85 1.55 1.34 1.16 0.99 0.81 0.59 0.32

−0.75 2.58 2.02 1.70 1.46 1.26 1.07 0.87 0.62 0.29

−1 2.81 2.19 1.84 1.59 1.38 1.17 0.95 0.66 0.24

(d) F/(1 + F) = 0.6

1 1.20 1.01 0.90 0.82 0.75 0.69 0.63 0.55 0.42

0.75 1.29 1.08 0.95 0.87 0.80 0.73 0.66 0.57 0.43

0.50 1.41 1.17 1.03 0.93 0.85 0.78 0.69 0.59 0.44

0.25 1.55 1.28 1.13 1.01 0.92 0.83 0.74 0.62 0.46

0 1.72 1.40 1.23 1.11 1.00 0.90 0.79 0.66 0.48

−0.25 1.88 1.54 1.34 1.21 1.10 0.98 0.86 0.71 0.50

−0.5 2.04 1.67 1.46 1.32 1.19 1.07 0.94 0.78 0.53

−0.75 2.18 1.79 1.58 1.42 1.29 1.17 1.03 0.85 0.58

−1 2.30 1.90 1.68 1.53 1.39 1.27 1.12 0.93 0.64

(e) F/(1 + F) = 0.7

1 1.01 0.88 0.81 0.76 0.72 0.68 0.63 0.58 0.49
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Table 2 continued

ϕ ↓ δ → 60◦ 45◦ 30◦ 15◦ 0◦ −15◦ −30◦ −45◦ −60◦

0.75 1.10 0.95 0.87 0.81 0.76 0.72 0.67 0.61 0.51

0.5 1.22 1.04 0.94 0.88 0.83 0.78 0.72 0.65 0.54

0.25 1.35 1.15 1.04 0.97 0.90 0.85 0.79 0.70 0.57

0 1.50 1.28 1.16 1.07 1.00 0.93 0.86 0.76 0.62

−0.25 1.64 1.41 1.28 1.19 1.11 1.03 0.95 0.85 0.68

−0.5 1.78 1.54 1.40 1.30 1.22 1.14 1.05 0.94 0.75

−0.75 1.90 1.65 1.51 1.41 1.33 1.25 1.16 1.03 0.84

−1 2.00 1.75 1.62 1.52 1.43 1.35 1.26 1.13 0.93

(f) F/(1 + F) = 0.8

1 0.87 0.80 0.75 0.72 0.70 0.68 0.65 0.62 0.56

0.75 0.94 0.86 0.81 0.78 0.75 0.73 0.70 0.66 0.59

0.5 1.04 0.94 0.89 0.85 0.82 0.78 0.75 0.70 0.63

0.25 1.15 1.04 0.98 0.94 0.90 0.86 0.82 0.77 0.69

0 1.29 1.16 1.09 1.04 1.00 0.96 0.91 0.85 0.76

−0.25 1.43 1.29 1.21 1.16 1.11 1.07 1.02 0.95 0.84

−0.5 1.56 1.42 1.34 1.28 1.23 1.18 1.13 1.06 0.94

−0.75 1.68 1.54 1.46 1.40 1.35 1.30 1.25 1.17 1.04

−1 1.79 1.65 1.57 1.51 1.46 1.41 1.35 1.28 1.15

for the height Zb and the location −Xb of the bow wave generated by a ship bow with rake and flare, as shown in
Figs. 1 and 24. These relations account for the influence of the rake angle δ and the flare parameter ϕ on the bow-
wave height Zb and location −Xb via the functions ζb(F, δ, ϕ) and ξb(F, δ, ϕ). These two functions—determined
using thin-ship theory—provide corrections to the relations given in [1, 2] for the special case of wedge-ended
ship bows without rake and flare, for which we have ζb = 1 and ξb = 1 in (51a). The simple analytical relations
(51) and the twelve Tables 1a–f and 2a–f of values of the functions ζb and ξb provide estimates of the bow-wave
height Zb and location −Xb for a broad class of ship bows with rake and flare. These tables and (51) can be used
immediately—without hydrodynamic calculations—for ship design. The results depicted in Figs. 25–27 and listed
in Tables 1a–f and 2a–f show that rake and flare can have large effects, especially at low Froude numbers.

Expressions (51a) with ζb = 1 and ξb = 1, i.e., for the special case δ = 0 and ϕ = 0, are shown in [1, 2] to be
in reasonable agreement with experimental measurements for both wedge-shaped ship bows and a rectangular flat
plate. The comparisons between experimental measurements and theoretical predictions reported in Fig. 16 for the
Wigley hull and in Figs. 21–23 (and the Table related to Fig. 23) for wedge-shaped ship bows show that the use of
thin-ship theory, adopted here, to extend the relations given in [1, 2] to the more general case δ �= 0 and ϕ �= 0 is
appropriate for fine ship bows (i.e. for a large class of fast ships). Thus, the approach followed in [1, 2] and here to
obtain (51a) is experimentally validated, at least to some extent, by the comparisons between experimental mea-
surements and theoretical predictions reported in Figs. 16, 21–23 and in [1, 2]. These comparisons also provide an
indication of the accuracy that can reasonably be expected from the simple relations (51a). Additional comparisons,
for a large set of ship bows with rake and flare, would of course be useful.

The Bernoulli bound Z g/V 2
s ≤ 1/2 for steady free-surface flows considered in [1] shows that ship bow waves

are necessarily unsteady if 1/2 < Zb g/V 2
s , i.e., if

F ≤ 2.2(tan α + tan α′)ζb(F, δ, ϕ)− 1. (52)

Thus, (51a) is not valid in the unsteady-bow-wave regime defined by (52), i.e. for relatively large average waterline
entrance angle α + α′. Indeed, [1] shows that we have Zb g/V 2

s ≈ 1/2 in the unsteady regime (52).
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A four-parameter family of simple ruled ship bows has been considered here for two main reasons: (i) the four
parameters α + α′, δ, ϕ and F are major parameters that have a dominant influence on a ship bow wave, and (ii)
the limited number of parameters involved in this family of ship bows made it possible to perform a systematic
parametric study and to obtain results—specifically, the functions ζb(F, δ, ϕ) and ξb(F, δ, ϕ) listed in Tables 1a–f
and 2a–f—that can be used immediately, without hydrodynamic calculations. A more general family of ship bows
that accounts for the hull curvature would involve a significantly greater number of parameters, for which a system-
atic parametric study would be problematic. However, the highly-simplified thin-ship theory given here provides a
practical basis for considering more complex ship bows.
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